Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes.
نویسندگان
چکیده
Calpains are a family of non-lysosomal cysteine proteases. Recent studies have identified a member of the calpain family of proteases, calpain 10, as a putative diabetes-susceptibility gene that may be involved in the development of type 2 diabetes. Inhibition of calpain activity has been shown to reduce insulin-stimulated glucose uptake in isolated rat-muscle strips and adipocytes. In this report, we examine the mechanism by which calpain affects insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Inhibition of calpain activity resulted in approx. a 60% decrease in insulin-stimulated glucose uptake. Furthermore, inhibition of calpain activity prevented the translocation of insulin-responsive glucose transporter 4 (GLUT4) vesicles to the plasma membrane, as demonstrated by fluorescent microscopy of whole cells and isolated plasma membranes; it did not, however, alter the total GLUT4 protein content. While inhibition of calpain did not affect the insulin-mediated proximal steps of the phosphoinositide 3-kinase pathway, it did prevent the insulin-stimulated cortical actin reorganization required for GLUT4 translocation. Specific inhibition of calpain 10 by antisense expression reduced insulin-stimulated GLUT4 translocation and actin reorganization. Based on these findings, we propose a role for calpain in the actin reorganization required for insulin-stimulated GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. These studies identify calpain as a novel factor involved in GLUT4 vesicle trafficking and suggest a link between calpain activity and the development of type 2 diabetes.
منابع مشابه
TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling.
OBJECTIVE Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. METHODS ...
متن کاملDual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specific...
متن کاملAdrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation.
Activation of the sympathetic nervous system inhibits insulin-stimulated glucose uptake. However, the underlying mechanisms are incompletely understood. Therefore, we studied the effects of catecholamines on insulin-stimulated glucose uptake and insulin-stimulated translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. We found that epinephrine (1 microM) nearly halved insulin-stimu...
متن کاملDimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 ...
متن کاملA novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 376 Pt 3 شماره
صفحات -
تاریخ انتشار 2003